Benha University Faculty of Engineering at Shoubra Electrical Engineering Department

Sheet 1

1. Starting from the transmission line model, derive an equation for the attenuation constant and phase constant of transmission line in terms of R, L, C, G.
2. Use the telegrapher equation, and general solution of wave equation to derive an equation for the characteristic impedance of transmission line.
3. The current on a transmission line is given as $i(t)=1.2 \operatorname{Cos}\left(1.51 \times 10^{10} t-80.3 z\right)$ A. Determine (a) the frequency, (b) the wavelength, (c) the phase velocity, and (d) The phasor representation of this current.
4. A transmission line has the following per unit length parameters: $L=0.2 \mu \mathrm{H} / \mathrm{m}, \mathrm{C}=300 \mathrm{pF} / \mathrm{m}$, $\mathrm{R}=5 \Omega / \mathrm{m}$ and $\mathrm{G}=0.01 \mathrm{~S} / \mathrm{m}$. Calculate the propagation constant and the characteristic impedance of this line at 500 MHz . Recalculate these quantities in the absence of loss ($\mathrm{R}=\mathrm{G}=0$).
5. The parameters of a certain transmission line operating at $6 \times 10^{8} \mathrm{rad} / \mathrm{s}$ are $\mathrm{L}=0.4 \mu \mathrm{H} / \mathrm{m}, \mathrm{C}=40$ $p F / m, G=80 \mathrm{~mm} \mathrm{~S} / \mathrm{m}$, and $R=20 \Omega / \mathrm{m}$. a) Find $\gamma, \alpha, \beta, \lambda$, and Z_{0}.
6. The characteristic impedance of a certain lossless transmission line is 72Ω. If $L=0.5 \mu \mathrm{H} / \mathrm{m}$, Find $C, v_{\text {ph }}$ and β If $f=80 \mathrm{MHz}$.
7. A lossless transmission line having $Z 0=120 \Omega$ is operating at $\omega=5 \times 10^{8} \mathrm{rad} / \mathrm{s}$. If the velocity on the line is $2.4 \times 10^{8} \mathrm{~m} / \mathrm{s}$, find L and C .
8. Two characteristics of a certain lossless transmission line are $\mathrm{ZO}=50 \Omega$ and $\gamma=0+j 0.2 \pi \mathrm{~m}^{-1}$ at $f=60 \mathrm{MHz}$. Find L and C for the line.
9. The propagation constant of a lossy transmission line is $1+\mathrm{j} 2 \mathrm{~m}^{-1}$, and its characteristic impedance is $20+j 0 \Omega$ at $\omega=1 \mathrm{M} \mathrm{rad} / \mathrm{s}$. Find $\mathrm{L}, \mathrm{C}, \mathrm{R}$, and G for the line.
10. The incident voltage wave on a certain lossless transmission line for which $Z_{0}=50 \Omega$ and $\mathrm{v}_{\mathrm{ph}}=2 \times 10^{8} \mathrm{~m} / \mathrm{s}$ is $\mathrm{V}^{+}(\mathrm{z}, \mathrm{t})=200 \cos (\omega \mathrm{t}-\pi \mathrm{z}) \mathrm{V}$.
a) Find ω. b) Find $\mathrm{I}^{+}(\mathrm{z}, \mathrm{t})$.
