Benha University Faculty of Engineering at Shoubra Electrical Engineering Department

Microwave fundamentals 3rd Year Communications (2018-2019)

Sheet 1

- 1. Starting from the transmission line model, derive an equation for the attenuation constant and phase constant of transmission line in terms of R, L, C, G.
- 2. Use the telegrapher equation, and general solution of wave equation to derive an equation for the characteristic impedance of transmission line.
- The current on a transmission line is given as i(t) =1.2Cos (1.51×10¹⁰t 80.3z) A. Determine
 (a) the frequency, (b) the wavelength, (c) the phase velocity, and (d) The phasor representation of this current.
- 4. A transmission line has the following per unit length parameters: L=0.2 μ H/m, C=300pF/m, R=5 Ω /m and G=0.01S/m. Calculate the propagation constant and the characteristic impedance of this line at 500MHz. Recalculate these quantities in the absence of loss (R=G=0).
- 5. The parameters of a certain transmission line operating at 6×10^8 rad/s are L=0.4µH/m, C= 40 pF/m, G=80 mm S/m, and R=20 Ω /m. a) Find γ , α , β , λ , and Z₀.
- 6. The characteristic impedance of a certain lossless transmission line is 72 Ω . If L = 0.5 μ H / m, Find C, v_{ph} and β If f = 80MHz.
- 7. A lossless transmission line having Z0 =120 Ω is operating at ω =5×10⁸ rad/s. If the velocity on the line is 2.4×10⁸ m/s, find L and C.
- 8. Two characteristics of a certain lossless transmission line are Z0=50 Ω and γ = 0+ j 0.2 π m⁻¹ at f=60 MHz. Find L and C for the line.
- 9. The propagation constant of a lossy transmission line is $1+j2 \text{ m}^{-1}$, and its characteristic impedance is $20+j0 \Omega$ at $\omega=1 \text{ M rad/s}$. Find L, C, R, and G for the line.
- 10. The incident voltage wave on a certain lossless transmission line for whichZ₀=50 Ω and v_{ph}=2×10⁸ m/s is V⁺(z, t)=200 cos (ω t- π z)V.
 - a) Find ω . b) Find I⁺(z, t).

Good Luck

Dr. Gehan Sami